
LLNL-TR-670388

1

Design & Implementation of MACSio
(pronounced “max-ee-oh”)

A Multi-purpose, Application-Centric, Scalable I/O
Proxy Application

Mark C. Miller

Introduction
We are proposing to develop “MACSio” (pronounced “max-ee-oh”), a Multi-purpose,
Application-Centric, Scalable I/O proxy application. It is being proposed to fill a long
existing void in co-design proxy applications that allow for I/O performance testing
and evaluation of tradeoffs in data model interfaces and parallel I/O paradigms for
multi-physics, HPC applications.

Two key design features of MACSio will set it apart from existing I/O benchmarking
tools. The first is the level of abstraction (LOA) at which MACSio is being designed to
operate. The second is the degree of flexibility MACSio is being designed to provide
in driving an HPC I/O workload through parameterized, user-defined data objects
and a variety of parallel I/O paradigms and I/O interfaces.

Combined, these features will allow MACSio to closely mimic I/O workloads for a
wide variety of real applications and, in particular, multi-physics applications where
data object distribution and composition vary dramatically both within and across
parallel tasks. These data objects can then be marshaled using one or more I/O
interfaces and parallel I/O paradigms, allowing for direct comparisons of software
interfaces, parallel I/O paradigms, and file system technologies with the same set of
customizable data objects.

Level of Abstraction (LOA) and the HPC I/O Stack
The significance of LOA and its potential for impact on I/O workload cannot be
understated. Application programming interfaces (APIs) supporting HPC I/O are
implemented in layers of ever more sophisticated data modeling abstractions.
These layers of data abstraction from what is commonly known as the HPC I/O
“stack” illustrated in Figure 1.

LLNL-TR-670388

2

Figure 1 Various abstraction levels of the HPC I/O stack supporting modern, multi-physics HPC
applications. Included are levels not typically mentioned but are nonetheless here for completeness.

Levels highlighted in green are the main focus of MACSio.

Each layer implements its abstractions in terms of the abstractions available in the
layer below. At the top, applications simulate real-world phenomena by solving a
collection of coupled, partial differential equations (PDEs). In a multi-physics
simulation the phenomena of interest may include, for example, a combination of
structural mechanics, electromagnetics, fluid dynamics, heat conduction, chemical
kinetics and multi-phase materials.

The phenomena of the “real-world” are characterized by continuous mathematical
equations (e.g. partial differential equations, fields, topologies, manifold spaces,
etc.). These continuous equations are then expressed in terms of discrete numerical
models (meshes, elements and variables, etc.) suitable for implementation as
computational processes. In turn, these models are implemented in programming
languages in terms of algorithms and data structures (arrays, structs, linked lists,
trees, etc.). Ultimately, these data structures are composed of large volumes of
numbers (ints, floats, pointers, offsets, lengths, etc.) occupying locations in primary
memory. When an application needs to dump this data to secondary storage, it
typically does so through a POSIX I/O interface (files, directories, links, permissions,
etc.).

LLNL-TR-670388

3

Pros and cons of software abstractions
As is so often the case in computer science, abstraction is a key to addressing
complex software engineering challenges. The evolution of the HPC I/O stack is no
exception. With abstraction in I/O interfaces has come many benefits; APIs better
match application data and are easier to use, data is more shareable and, by
extension, applications more interoperable, DIT services are more abundant and
data management tools more sophisticated.

On the other hand, as a general rule of thumb, abstraction in computer science has
historically also proven to be in constant conflict with performance. For example,
the diagram in Figure 2 illustrates an important consequence of data abstraction
layering in the IP Protocol Stack.

Figure 2 The IP Protocol Stack; remarkably similar in concept and purpose to the HPC I/O stack.

Each layer incurs some overhead in the form of additional data needed to
implement a given layer’s abstractions. At the bottom of the stack, the abstraction
overhead, in terms of data packet size in the example of the IP Protocol stack, is
perhaps as much as 100%. In I/O activities within software components of the HPC
I/O stack, abstraction overhead can impact performance in sometimes
unanticipated and often difficult to diagnose ways.

We aim to develop MACSio to operate at higher levels of abstraction than current
tools. The “AC” in MACSio stands for Application-Centric. MACSio will be designed to
generate I/O workloads that are representative of how real applications actually
interact with secondary storage through the HPC I/O stack each layer of which has
the potential to impact I/O behavior as data ultimately flows to/from disk.

I/O Performance Characteristics and Comparisons
Typical performance curves for several common layers of software in the HPC I/O
stack are illustrated in the notional diagram in Figure 3. This diagram illustrates a
number of performance characteristics typical of HPC I/O as a function of request
size…

1. I/O performance can be no better than actual hardware disk rates.
2. I/O performance improves with increasing request sizes.

LLNL-TR-670388

4

3. Performance curves for one layer can be no better than the layer below.
4. The difference in performance at any given request size can be interpreted

as the overhead cost to implement/use the data abstractions that level
offers.

5. As request size increases, abstraction overheads become less significant.
6. When significant overheads impact performance, this is often due to

impedance mismatches between layers; either within the I/O stack of
between the application and the top layer of the stack.

Figure 3 Notional I/O performance as a function of request size. This diagram illustrates a number of

features of HPC I/O performance as a function of request sizes.

Figure 3 also illustrates a typical I/O request histogram for a representative
application in yellow. The yellow bars in the figure represent various request size
ranges. For a given range, the height of a bar indicates the percent of total bytes in a
given (restart or plot) dump that were read or written at that request size range. In
this example, a majority of bytes were read or written at relatively small request
sizes where abstraction overheads in the performance curves are severe. The
application will suffer serious I/O performance losses as a consequence. However, if
the application can operate at large enough I/O request sizes that most of the
performance overheads are amortized away, then performance will be good.

Often, the solution to improving performance is to find a way to aggregate large
collections of smaller requests into a handful of larger requests. When such requests
originate within the I/O stack, it is often possible to re-engineer one or more of the
layers and better performance is achieved without any need to change the
application(s). On the other hand, when these requests originate from the
application itself, it is sometimes necessary to adjust the application to improve the
way it utilizes one or more of the underlying layers.

LLNL-TR-670388

5

This aspect of I/O performance is also illustrated in the figure with either solid
yellow or pattern filled to indicate the two different kinds of I/O requests. Those
that originate directly from the application itself are solid filled. Those that originate
from another layer are pattern filled. The requests that originate from another layer
are almost invariably a result of the additional metadata necessary for the layer to
implement the data abstractions it presents.

In this example, a majority of the smaller I/O requests originate as metadata from
one of the layers. However, there are also quite a few small requests that originate
from the application itself.

This kind of detailed analysis and in particular getting a handle on where in the
stack I/O requests originate is some of the key kind of performance data MACSio
will produce enabling us to identify places where a given layer could be used in
better ways as well as where certain application behaviors that are bad for
performance could be identified and re-engineered.

Multi-Purpose I/O Workload Generation
Another key part of MACSio’s design is that it is intended to provide a lot of
flexibility and customizability in the way it can drive I/O activities. This flexibility is
made possible by a few key design choices.

The first, already described above, is the LOA at which MACSio is designed to
operate. The level of abstraction of MACSio’s data generation will be such that it can
represent the highest levels of abstraction at which real HPC applications express
their I/O operations. This, alone, provides a significant amount of flexibility in the
resulting I/O workloads that MACSio will be able to demonstrate.

Another key design feature of MACSio is the use of a dynamic, run-time plugin
architecture. This design will define how high-level data generated within MACSio is
delivered to I/O plugins and will enable plugin developers the greatest flexibility in
deciding how best to handle data marshaled by MACSio.

Parallel I/O Paradigms
The data generated within MACSio will be suitable to drive a variety of parallel I/O
paradigms within MPI and MPI+ parallel execution contexts. Those in current use
and most common among HPC applications are illustrated in Figure 4.

LLNL-TR-670388

6

Figure 4 Common HPC Parallel I/O Paradigms. Black lines tie I/O activities that may proceed in parallel.
Top: Single Shared File (SSF) both collective and independent, middle: Multiple, Independent File (MIF)

and bottom: File-per-Processor (FPP). Note that these diagrams illustrate what the application sees
looking down at the file system.

Single Shared File (SSF)
In the single, shared file (SSF) paradigm, parallelism is achieved through concurrent
access to a single, shared file (from the perspective of the application). This
paradigm is sometimes also called N->1 because it is N tasks writing to one, single
file. In this paradigm I/O requests can be either independent or collective. This is
illustrated by the two paths labeled collective and independent in the upper
diagram of Figure 4. However, collective requests are seen as being somewhat
unique to the SSF paradigm as well as potentially offering the greatest opportunity
for high performance. On the other hand, there are some subtleties regarding what
collective I/O operations truly mean in the SSF paradigm (or any other paradigm for
that matter) that require further clarification in a later section of this document. SSF
is sometimes referred to as Rich Man’s parallel I/O because it utilizes (requires in
fact) a parallel interface at the file system LOA (e.g. Lustre, GPFS, or PLFS).

Segmented and Strided SSF
In some descriptions, the SSF paradigm is further divided into segmented and strided
access patterns. These access patterns have to do with the granularity at which data
from different tasks intermingles in the file address space. In segmented SSF, large

LLNL-TR-670388

7

swaths of the file address space tend to be read/written by a single task. In strided
SSF, data from many/all tasks tends to co-mingle even in very fine grained swaths.

Multiple Independent File (MIF)
In the multiple, independent file (MIF) paradigm, parallelism is achieved through
simultaneous access to multiple files. The application divides itself into file groups.
For each file group, the application manages exclusive access among all the tasks of
the group. I/O is serial within groups but parallel across groups. The number of files
(groups) is wholly independent from the number of processors and is often chosen
to match the number of independent I/O pathways available in the hardware
between the compute nodes and the file system. This paradigm is sometimes also
called N->M because it is N tasks writing to M files (M<N).

In this paradigm I/O requests are almost exclusively independent. However, there
are scenarios where collective I/O requests can be made to work and might even
make sense in the MIF paradigm. MIF is often referred to as Poor Man’s parallel I/O
because the onus is on the application to manage the distribution of data across
potentially many files. In truth, this illuminates the only salient distinction between
SSF and MIF. In either paradigm, if you dig deep enough into the I/O stack, you soon
discover that data is always being distributed across multiple files. The only
difference is whether that physical arrangement of data is hidden from the
application by some sort of higher level abstraction (e.g. a parallel file system) or
explicitly managed by the application (and thereby also exposed to the file system).

File Per Processor (FPP)
The file per processor paradigm is just a special case of MIF where the number of
files is equal to the number of processors. This paradigm is sometimes called N->N
because it is N tasks writing to N files. However, FPP paradigms typically also
include a throttle to govern the number of files that are being accessed at any one
time to avoid overloading the underlying storage systems components.

Apart from SSF and MIF, there is indeed a multiple shared file paradigm as well.
Although it is not often used in practice, ensuring MACSio has the ability to drive
such a paradigm makes some sense. On the other hand, there isn’t anything
particularly special about a multiple shared file paradigm that involves additional
work beyond that necessary to support SSF and MIF.

What Will Collective I/O Operations in MACSio mean?
Typically, the notion of collective applies to the interface through which data is
marshaled. In a collective interface, all processors must call the same function with
largely the same arguments though buffer contents and sizes may vary from
processor to processor. Think of a parallel, distributed, 2 dimensional array as
illustrated in Figure 5.

LLNL-TR-670388

8

Figure 5 Examples of distributed, multi-dimensional array storage in memory and in a file.

Each processor may have a different, potentially non-contiguous, piece of the array.
In a single collective call, all processors can work together to marshal it. However,
collective-ness is a constraint only on the interface between the application and the
rest of the I/O stack. What happens with the data below this interface either as it
moves down the I/O stack and out to the file or up the I/O stack and into the
application’s memory? In particular, what is the assumed structure of the array in
the file on read or that winds up getting created in the file on write?

In Figure 5, two common situations are illustrated. In each case, all processors are
collectively working to either read or write the whole array object. However, in one
case, the array object in the file is utilized as nothing more than a glorified buffer
container. We call this an abstraction defeating approach and is a common pitfall in
parallel I/O benchmarking tools. Any consumer would be unable to correctly
interpret the array object without having additional information on how to properly
knit it back together. Furthermore, even if the producer provides such additional
information, all consumers would have to know such information exists, where to
find it in the file and how to utilize it. This effectively burdens all consumers with
the work of implementing the very data model abstractions the layers in the I/O
stack are designed to provide.

On the other hand, an abstraction preserving approach removes all assumptions
about parallel decomposition of data and facilitates re-decomposition into different
parallel distributions upon re-read. In MACSio, valid collective I/O operations, which
apply primarily to SSF paradigms, will require that the resulting data objects be
abstraction preserving.

LLNL-TR-670388

9

Metadata, Burst Buffers and DIT Operations
File system metadata operations (e.g. file/directory creation and deletion) often
used in conjunction with these parallel I/O paradigms to manage directory trees
(breadth and depth) and forests (for many timesteps) will be included in the
workloads MACSio produces.

Likewise, data staging to/from burst buffers and/or migration to/from tertiary
storage (via utilities such as SCR or HIO) will be included in MACSio’s design.

In addition, MACSio will enable testing of various I/O-relevant Data-in-Transit (DIT)
services. Over the past few decades in scientific computing, I/O libraries have
evolved substantially from simply moving data between memory and persistent
storage, to offering a variety of other useful capabilities to operate on data in transit.
There are many DIT services available within various I/O libraries in the HPC I/O
stack. These include such operations as

• Numeric format conversions
• Checksumming for data integrity
• Precision reduction (e.g. double to float)
• Lossless and lossy compression
• Units conversions
• Data subsetting
• Coordinate transformations
• Data re-ordering and layout optimization for down-stream post-processing
• M-N data shuffles for aggregating I/O requests across ranks
• In rare cases, even derived variable computation and sophisticated feature

detection algorithms.
MACSio will ensure the data it generates to be marshaled by I/O libraries is of a
sufficient character to drive a number of I/O relevant DIT services as well as provide
a means for comparing performance/utility among them.

On the other hand, among all the things an I/O library can do, one thing it ought to
do well is I/O. And, this is first and foremost what MACSio is being designed to test
and measure; an I/O library’s ability to do I/O apart from anything else the library
may be capable of doing and, in particular, the library’s ability to do I/O at scales
and in configurations relevant to current and future generation systems and
applications.

Existing I/O Benchmarking Tools
In this section we introduce and describe several existing I/O benchmarking tools
available. We first describe some well known HPC specific benchmarks. Then, for
completeness, we also list several non-HPC specific benchmark tools but without
much discussion of their capabilities.

LLNL-TR-670388

10

In Table 1 we summarize results from a review of a number of currently available
I/O benchmarking tools.

LLNL-TR-670388

11

Table 1 Feature Comparison of I/O Performance Tools

 Lang LOA Pmode Verify Coll Real
Data

Abs
Keep

HPC relevant DIT Services EZ Extend Dir
Ops

Perf
DB

Last
Active M/N Zip Sub Trans Pmode Lib MPI+

IOR C File system SSF, MIF Yes Yes No No Yes No No No No Yes Yes No 2013
FLASH-IO Mix AMR Mesh SSF No No No Yes No No No No No No No No 2011
S3D-IO Fort 3D Array SSF No Yes No Yes No No No No No No No No ?
BTIO Fort 3D Array SSF Yes Yes Yes Yes No No No No No No No No 2003
GCRM-IO C AMR Mesh SSF No Only No Yes No No No No No No No No 2013?
HACC-IO C++ 1D Array SSF No No No No No No No No Yes Yes No No 2012
b_eff_io C File system SSF, FPP No Yes No No No No No No Yes No No No 2001
MPI Tile IO C File system SSF No Yes No No Yes No No No No No No No 2001
Non contig IO C File system SSF Yes Yes No No No No No No No No No No 2005
fs_test C File system SSF Yes Yes No No No No No NO No No Yes Yes 2008
Parkbench Fort File system SSF Some Yes No Yes No No No Yes No No No No 1997
Mdtest C Fileystem None No No No No No No No No No No Yes No 2003
Rompio C File system SSF Yes Yes No No No No No No No No No No 2007

Tiobench C File system None 2000

Legend:
Lang = programming language
LOA = Level of abstraction within I/O stack at which benchmark’s I/O requests operate
Pmode = Parallel I/O paradigms/modes supported
Verify = Are I/O requests verified that expected data is read/written
Coll = Does the benchmark test/support collective I/O requests
Real Data = Is the data marshaled by the benchmark representative of a real application
Abs Keep = Are the I/O operations abstraction preserving
HPC Relevant DIT Services (Are the following Data In Transit services tested/supported…)

M/N = M<->N Data shuffles
Zip = Compression, including precision reductions
Sub = Data subsetting
Trans = Data re-orderings/transposes

EZ Extend (Does the implementation appear to support easily adding…)
 Pmode = a new I/O paradigm/mode
 Lib = a new I/O library
 MPI+ = multi-core/multi-threading
Dir Ops = Are file system directory operations in concert with file I/O tested/supported
Perf DB = Are performance results captured in a curated/hosted database
Last Active = Guesstimate of last time any development work was performed

LLNL-TR-670388 12

Detailed Discussion of some HPC Specific I/O Benchmarks
Here we briefly describe some of the existing HPC I/O benchmarking tools currently
available. The information presented here is gleaned from reading and in some
cases directly quoting documentation and where necessary actual source code.

fs_test (formerly MPI-IO Test)
fs_test was originally developed at LANL under the name MPI-IO Test. It is available
on GitHub (https://github.com/fs-test) and was last updated May, 2014. Fs_test
operates at the “File system” LOA (lowest level of the green levels highlighted in
figure 1) It tests reads and writes, collective and independent, via PLFS, Posix and
MPI-IO. Using terminology defined in the fs_test documentation, it also aims to test
N-N, N-M and N-1 (strided and non-strided) DIT services. The shuffle patterns
produced represent highly regularized, best case scenarios. So, the benchmark is apt
to produce optimistic, upper bounds of I/O performance realizable by HPC multi-
physics applications.

IOR
IOR stands for "Interleaved or Random". It is available on SourceForge
(http://sourceforge.net/projects/ior-sio/) and was last updated April 2013. IOR
operates at the “File system” LOA (lowest level of the green levels highlighted in
figure 1). IOR is designed to test parallel file system performance by driving I/O
requests, reads and writes, collective and independent through one of several
available interfaces; MPI-IO, Posix (file-per-processor), PLFS, IOD*, DAOS*, HDF5
and netCDF (parallel). It supports SSF I/O (Single shared file) and there appears to
be limited support for MIF I/O.

IOR employs an abstract interface for characterizing I/O operations and then
includes a number of implementations of this interface for each of the
aforementioned products. The IOD and DAOS products are internal interfaces to the
Fast Forward I/O Stack. IOD is the "IO Dispatcher" and DAOS is the "Distributed
Application Object Storage" layer interface. MPI-IO, Posix, PLFS, IOD, DAOS are file
system interfaces while HDF5 and netCDF are high-level array-based I/O libraries.

Because IOR's abstract interface for characterizing I/O operations is designed more
or less at the file system level of abstraction, it winds up using and driving HDF5 and
netCDF in substantially restricted ways from how applications ordinarily use them.
In short, IOR doesn't use HDF5 or netCDF interfaces at the same LOA multi-physics
HPC applications typically would.

An important feature of IOR's design is that its very simple abstract interface makes
it easy to plug in, statically, new I/O interfaces to it. Though, at present those
interfaces are defined at compile time. There appears to be some work underway to
add Amazon S3, HDF5 REST interfaces and mdtest (see below) functionality into
IOR.

https://github.com/fs-test
http://sourceforge.net/projects/ior-sio/

LLNL-TR-670388

13

However, IOR cannot drive any of these interfaces at an LOA that is significantly
different from the file system LOA. That alone makes IOR unsuitable for the kind of
end-to-end performance analysis and comparisons we wish to achieve. IOR cannot
test compresssion of multi-dimensional arrays. It cannot test M-N data shuffles of
multi-dim arrays, traffic and performance of which is much more complicated than
swaths of 1D buffers. For that matter, it cannot test the effects of different chunking
and blocking factors of multi-dim arrays. In no way could it drive bi-modal
interfaces like iMeshP, LibMesh or Vista. The workloads IOR generates are very
regular, the same data in the same sizes from the same processors at the same
intervals. It sort of represents the minimum you'd want from a benchmarking tool.

mdtest
mdtest is available on SourceForge (http://sourceforge.net/projects/mdtest/) and
was last updated December, 2013. Like fs_test and IOR, mdtest operates at the “File
system” LOA (lowest level of the green levels highlighted in Figure 1). However,
unlike fs_test and IOR, mdtest is designed primarily to test a file system's
performance in handling its own, internal metadata associated with directory tree
creation and traversal, file and link creation and stat inquires. So, mdtest isn't
designed so much to drive I/O requests (although it appears to have some ability to
do that), as it is to drive primitive file system operations often used on conjunction
with various parallel I/O paradigms where file and dir-tree creation and traversal
are involved. It appears to drive both Posix and PLFS interfaces.

Darshan I/O Instrumentation Library
Darshan is not an I/O benchmark. It is an I/O instrumentation library available from
ANL (http://git.mcs.anl.gov/radix/darshan.git/). It was last updated October, 2014.
It enables developers to take any existing application and, with minimal effort,
instrument it with Darshan to collect detailed timing information on Posix and
MPI_File I/O operations during application runs. It does its work at the file system
LOA (lowest level of the green levels highlighted in Figure 1), just as the other
benchmarking tools do. But it makes it possible to collect detailed file system
performance data from real applications in real use. It enables any application to be
used more or less like a benchmarking tool.

Non HPC-specific I/O Benchmarks
In this section, we briefly describe some other non-HPC specific benchmarking tools
available either commercially or as Open Source.

iozone
Iozone is useful for determining a broad file system analysis of a vendor’s computer
platform. The benchmark tests file I/O performance for the following operations.
Read, write, re-read, re-write, read backwards, read strided, fread, fwrite, random
read/write, pread/pwrite variants, aio_read, aio_write, mmap,

http://sourceforge.net/projects/mdtest/

LLNL-TR-670388

14

iometer
iometer is a Windows only too. It was formerly developed by Intel tool and then
made Open Source. It tests and measures performance of hardware, buses, disks,
latencies and bandwidths.

Fio
Fio is an I/O Aworkload generator and statistics gatherering and reporting tool.
http://www.storagereview.com/fio_flexible_i_o_tester_synthetic_benchmark
http://pkgs.repoforge.org/fio/

Filebench
Filebench is a file system and storage benchmark that can generate both
micro and macro workloads. It employs a versatile language-based approach for
workload specification. Filebench includes several popular macro-workloads in its
distribution including those for Web-server, Mail-server, Database-server, and
others.

Bonnie++
(http://www.googlux.com/bonnie.html) Bonnie++ is a benchmark tool for testing
hard disks and file system performance.

TioTest
TioTest is a threaded I/O test of sec2/mmap interfaces.

sgpdd, odbfilter, ost survey
These are Lustre specific file system performance testing tools.

testdfs
testdfs is a tool for testing performance of the distributed file system of Hadoop
(HDFS)

Some Observations
Benchmarks are challenging to develop. I/O benchmarks are no exception. A 2009
study entitled “A Nine Year Study of File System and Storage Benchmarking”
(http://www.fsl.cs.sunysb.edu/project-fsbench.html) had this to say...

Benchmarking is critical when evaluating performance, but is
especially difficult for file and storage systems. Complex interactions
between I/O devices, caches, kernel daemons, and other OS
components result in behavior that is rather difficult to analyze.
Moreover, systems have different features and optimizations, so no
single benchmark is always suitable. The large variety of workloads
that these systems experience in the real world also add to this
difficulty.

We have found that some of the most commonly used benchmarks
are flawed, and many research papers do not provide a clear enough

http://www.googlux.com/bonnie.html
http://www.fsl.cs.sunysb.edu/project-fsbench.html

LLNL-TR-670388

15

picture of file system performance. We believe that a good
performance evaluation should use micro-benchmarks to highlight
both the good and bad qualities of a file system, as well as general-
purpose benchmarks or traces to give an idea about how it would
perform under expected and realistic workloads. Nevertheless, care
should be taken to ensure that general-purpose benchmarks indeed
accurately reflect the real-world workloads. In addition, benchmarks
should scale well, and results should be reproducible and comparable
across papers.

Add to this the additional complexities resulting from parallelism, scalability and the
HPC I/O stack and its pretty easy to reach the conclusion that scalable I/O
benchmarks are intractable.

A common theme in these I/O benchmarking tools is proliferation of run-time
parameters for a test either via command-line arguments or from configuration
files. For example, in IOR many of the features of high-level products like HDF5 (e.g.
compression, metadata caching) are not controllable without changing the IOR
source code perhaps in ways that are incompatible with its overall design or not
relevant to other I/O interfaces IOR tests. In MACSio, this issue is addressed by
supporting run-time options that are passed directly to specific plugins.

Almost without exception, all of these I/O benchmarks operate at the lowest LOA,
the file system interface. Even in the tools that support higher level libraries like
HDF5, the overall design of the benchmark does not admit the use of the library at
its natural LOA and instead tends to use the library in far too limited a way to be
representative of real HPC applications. MACSio will address this issue by freeing
plugin developers from having to worry about significant parts of the overall
benchmark implementation and instead allow them to focus on optimal use of the
library for a handful of specific I/O operations.

None of the tests currently available offer the ability to activate/drive other system
components, in particular the parallel interconnect, while simultaneously
attempting to perform I/O. However, additional loads on other system components
has historically proven to be a significant factor in I/O performance realized by HPC
applications in actual use. What this means is that existing benchmark tools are
likely to provide a best case, upper bound on I/O performance and not necessarily a
realistic estimate of performance HPC applications would realize. While MACSio’s
design will include accommodations for driving additional system loads (including
casting internal I/O operations in terms of an asynchronous paradigm), the initial
implementation of MACSio will also not include these features.

Libraries supporting the HPC I/O stack are complex and require a certain degree of
expertise to use effectively. Developing a benchmark for any one I/O interface in the
HPC I/O stack is a significant level of effort. Doing so for more than a handful of

LLNL-TR-670388

16

interfaces is almost intractable. As a result, the currently available I/O benchmarks
either do a decent job for a single interface or a mediocre job for several. In the case
of MACSio, a key intention of the design is that the actual I/O specific coding is
handled in a product specific plugin which, we expect, product experts to help to
develop. As part of MACSio’s initial development, we expect to develop a few key
plugins such as for Silo, HDF5 and maybe LibMesh or ITAPS. These plugins will
serve as examples to other plugin developers. However, we will also recognize that
development of plugins for different HPC I/O libraries will involve combined efforts
of other HPC library experts.

MACSio Design
In this section, we describe MACSio’s design at a high level illustrated in Figure 6.

Figure 6 High Level Design of MACSio

The Two Main Pieces of MACSio
MACSio is divided into two main pieces. The core of MACSio is the upper-level
driver. The MACSio driver generates data to be marshaled by I/O tests, orchestrates
tests and monitors performance. The other half of MACSio is the I/O plugins. An I/O
plugin implements a handful of interface methods to write/read dumps, interact
with the file system and provide fine-grained performance and event logging
information.

An I/O plugin in MACSio will manage dumps of data following one of the Parallel I/O
paradigms; either receiving data from MACSio to write or returning data to MACSio
to read. Two flavors of plugins will be supported. Uni-modal plugins support storage

LLNL-TR-670388

17

only as files in the file system. Bi-modal plugins support storage both as files in the
file system and as an in-memory database for applications to use internally.

Data Generation
The main driver of MACSio is responsible for generating the data that will be
marshaled for I/O performance testing. The data MACSio generates will be
parameterized, distributed 3D meshes (structured or unstructured) and arrays.
Parameterization will include

• Nominal and optionally randomization of mesh/array part counts per
rank/core

• A few choices in how mesh/array parts are distributed in parallel including
nicely structured distributions as well as fully unstructured distributions and
distributions that utilize only a subset of all cores/ranks.

• Nominal and optionally randomization of mesh/array part sizes (in terms of
numbers of zones of mesh or array entries)

• The number, type (char, int, float) and kind (nodal/zonal) of variables (mesh
variables or arrays)

• Choice in algorithm used to fill variable buffers with data (e.g. constant,
random/chaotic, sinusoidal, Poison distributed, etc.)

• Depth and breadth with optional randomization of auxiliary metadata
hierarchies (such as might be seen in material models or various other rich
metadata produced by multi-physics codes)

• Frequency of main mesh/array dump writes, reads or both as well as being
optionally interleaved with auxiliary data dumps.

The data MACSio generates will be housed in an uber JSON-like object tree that is
handed off to plugins for dump writes and received from plugins on dump reads.
This tree will include information essential for plugins to determine parallel
distribution of the main data objects.

Parallel I/O Mode Manager
The role of the Parallel I/O Mode manager in MACSio is to provide functionality to
the I/O plugins necessary to support key parallel I/O modes; SSF, MIF, etc.
Interaction with the underlying file system, including such operations as file and
directory creation are important events that will be managed by MACSio on behalf
of the plugins. When plugins need to perform these operations, they will do so by
consulting functions in MACSio’s Parallel I/O Mode Manager most likely through use
of a call-back programming paradigm.

Though it is not pictured in Figure 6, MACSio will also include the ability to control
various DIT services available in various layers of the I/O stack (and plugins) such
as MPI-IO’s ability to do M<->N data shuffles, or HDF5’s or netCDF’s ability to do
compression, etc.

LLNL-TR-670388

18

Dump Read/Write Sequencing
Dumps will occur at pseudo-regular intervals, with parameterized randomization. In
addition, there will be support for at least two categories of dumps, the main dump
plus a much smaller auxiliary dump (such as might be used for capturing time
histories or marshaling a subset of the main dump to a linker code). The frequencies
of each category of dump will be parameterized. In addition, while the main dump
category will most likely involve new files (but not required) with each new dump,
the auxiliary dump category need not and may just as well be handled by continuous
updates to the same file(s) across many dumps.

Performance Data Collection
MACSio will capture, minimally, the time required for a plugin to complete the write
or read of a dump and then average this over many sequences of dumps. In addition,
plugins will optionally be able to use timing utilities within MACSio to record finer
grained information regarding performance of individual parts of the dump process.
This is primarily so that MACSio can be used to gather information on how to
improve a given I/O library for a given use case MACSio drives.

MACSio will also include the ability to enable and disable Darshan I/O performance
capture for any given test.

The data MACSio captures will be combined with all relevant test parameters,
including information the test platform architecture to a curated/hosted
performance database.

Diagnostic, Debug, Error and Logging
It is not pictured in Figure 6. However, MACSio will also include utilities for plugins
(as well as MACSio proper) to log and handle error conditions and provide
additional diagnostic information regarding test progress and behavior.

	Introduction
	Level of Abstraction (LOA) and the HPC I/O Stack
	Pros and cons of software abstractions
	I/O Performance Characteristics and Comparisons

	Multi-Purpose I/O Workload Generation
	Parallel I/O Paradigms
	Single Shared File (SSF)
	Segmented and Strided SSF

	Multiple Independent File (MIF)
	File Per Processor (FPP)
	What Will Collective I/O Operations in MACSio mean?

	Metadata, Burst Buffers and DIT Operations

	Existing I/O Benchmarking Tools
	Detailed Discussion of some HCP Specific I/O Benchmarks
	fs_test (formerly MPI-IO Test)
	IOR
	mdtest
	Darshan I/O Instrumentation Library

	Non HPC-specific I/O Benchmarks
	iozone
	iometer
	Fio
	Filebench
	Bonnie++
	TioTest
	sgpdd, odbfilter, ost survey
	testdfs

	Some Observations

	MACSio Design
	The Two Main Pieces of MACSio
	Data Generation
	Parallel I/O Mode Manager
	Dump Read/Write Sequencing
	Performance Data Collection
	Diagnostic, Debug, Error and Logging

