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Design & Implementation of MACSio 
(pronounced “max-ee-oh”) 

A Multi-purpose, Application-Centric, Scalable I/O 
Proxy Application 

Mark C. Miller 

Introduction 
We are proposing to develop “MACSio” (pronounced “max-ee-oh”), a Multi-purpose, 
Application-Centric, Scalable I/O proxy application. It is being proposed to fill a long 
existing void in co-design proxy applications that allow for I/O performance testing 
and evaluation of tradeoffs in data model interfaces and parallel I/O paradigms for 
multi-physics, HPC applications.  
 
Two key design features of MACSio will set it apart from existing I/O benchmarking 
tools. The first is the level of abstraction (LOA) at which MACSio is being designed to 
operate. The second is the degree of flexibility MACSio is being designed to provide 
in driving an HPC I/O workload through parameterized, user-defined data objects 
and a variety of parallel I/O paradigms and I/O interfaces. 
 
Combined, these features will allow MACSio to closely mimic I/O workloads for a 
wide variety of real applications and, in particular, multi-physics applications where 
data object distribution and composition vary dramatically both within and across 
parallel tasks. These data objects can then be marshaled using one or more I/O 
interfaces and parallel I/O paradigms, allowing for direct comparisons of software 
interfaces, parallel I/O paradigms, and file system technologies with the same set of 
customizable data objects. 

Level of Abstraction (LOA) and the HPC I/O Stack 
The significance of LOA and its potential for impact on I/O workload cannot be 
understated. Application programming interfaces (APIs) supporting HPC I/O are 
implemented in layers of ever more sophisticated data modeling abstractions.  
These layers of data abstraction from what is commonly known as the HPC I/O 
“stack” illustrated in Figure 1. 
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Figure 1 Various abstraction levels of the HPC I/O stack supporting modern, multi-physics HPC 
applications. Included are levels not typically mentioned but are nonetheless here for completeness. 

Levels highlighted in green are the main focus of MACSio. 

Each layer implements its abstractions in terms of the abstractions available in the 
layer below. At the top, applications simulate real-world phenomena by solving a 
collection of coupled, partial differential equations (PDEs).  In a multi-physics 
simulation the phenomena of interest may include, for example, a combination of 
structural mechanics, electromagnetics, fluid dynamics, heat conduction, chemical 
kinetics and multi-phase materials. 
 
The phenomena of the “real-world” are characterized by continuous mathematical 
equations (e.g. partial differential equations, fields, topologies, manifold spaces, 
etc.). These continuous equations are then expressed in terms of discrete numerical 
models (meshes, elements and variables, etc.) suitable for implementation as 
computational processes. In turn, these models are implemented in programming 
languages in terms of algorithms and data structures (arrays, structs, linked lists, 
trees, etc.). Ultimately, these data structures are composed of large volumes of 
numbers (ints, floats, pointers, offsets, lengths, etc.) occupying locations in primary 
memory. When an application needs to dump this data to secondary storage, it 
typically does so through a POSIX I/O interface (files, directories, links, permissions, 
etc.).  
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Pros and cons of software abstractions 
As is so often the case in computer science, abstraction is a key to addressing 
complex software engineering challenges. The evolution of the HPC I/O stack is no 
exception. With abstraction in I/O interfaces has come many benefits; APIs better 
match application data and are easier to use, data is more shareable and, by 
extension, applications more interoperable, DIT services are more abundant and 
data management tools more sophisticated. 
 
On the other hand, as a general rule of thumb, abstraction in computer science has 
historically also proven to be in constant conflict with performance. For example, 
the diagram in Figure 2 illustrates an important consequence of data abstraction 
layering in the IP Protocol Stack. 
 

 
Figure 2 The IP Protocol Stack; remarkably similar in concept and purpose to the HPC I/O stack. 

Each layer incurs some overhead in the form of additional data needed to 
implement a given layer’s abstractions. At the bottom of the stack, the abstraction 
overhead, in terms of data packet size in the example of the IP Protocol stack, is 
perhaps as much as 100%. In I/O activities within software components of the HPC 
I/O stack, abstraction overhead can impact performance in sometimes 
unanticipated and often difficult to diagnose ways. 
 
We aim to develop MACSio to operate at higher levels of abstraction than current 
tools. The “AC” in MACSio stands for Application-Centric. MACSio will be designed to 
generate I/O workloads that are representative of how real applications actually 
interact with secondary storage through the HPC I/O stack each layer of which has 
the potential to impact I/O behavior as data ultimately flows to/from disk. 

I/O Performance Characteristics and Comparisons 
Typical performance curves for several common layers of software in the HPC I/O 
stack are illustrated in the notional diagram in Figure 3. This diagram illustrates a 
number of performance characteristics typical of HPC I/O as a function of request 
size… 
 

1. I/O performance can be no better than actual hardware disk rates. 
2. I/O performance improves with increasing request sizes. 
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3. Performance curves for one layer can be no better than the layer below. 
4. The difference in performance at any given request size can be interpreted 

as the overhead cost to implement/use the data abstractions that level 
offers. 

5. As request size increases, abstraction overheads become less significant. 
6. When significant overheads impact performance, this is often due to 

impedance mismatches between layers; either within the I/O stack of 
between the application and the top layer of the stack. 

 

 
Figure 3 Notional I/O performance as a function of request size. This diagram illustrates a number of 

features of HPC I/O performance as a function of request sizes. 

Figure 3 also illustrates a typical I/O request histogram for a representative 
application in yellow. The yellow bars in the figure represent various request size 
ranges. For a given range, the height of a bar indicates the percent of total bytes in a 
given (restart or plot) dump that were read or written at that request size range. In 
this example, a majority of bytes were read or written at relatively small request 
sizes where abstraction overheads in the performance curves are severe. The 
application will suffer serious I/O performance losses as a consequence. However, if 
the application can operate at large enough I/O request sizes that most of the 
performance overheads are amortized away, then performance will be good. 
 
Often, the solution to improving performance is to find a way to aggregate large 
collections of smaller requests into a handful of larger requests. When such requests 
originate within the I/O stack, it is often possible to re-engineer one or more of the 
layers and better performance is achieved without any need to change the 
application(s). On the other hand, when these requests originate from the 
application itself, it is sometimes necessary to adjust the application to improve the 
way it utilizes one or more of the underlying layers.  
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This aspect of I/O performance is also illustrated in the figure with either solid 
yellow or pattern filled to indicate the two different kinds of I/O requests. Those 
that originate directly from the application itself are solid filled. Those that originate 
from another layer are pattern filled. The requests that originate from another layer 
are almost invariably a result of the additional metadata necessary for the layer to 
implement the data abstractions it presents. 
 
In this example, a majority of the smaller I/O requests originate as metadata from 
one of the layers. However, there are also quite a few small requests that originate 
from the application itself. 
 
This kind of detailed analysis and in particular getting a handle on where in the 
stack I/O requests originate is some of the key kind of performance data MACSio 
will produce enabling us to identify places where a given layer could be used in 
better ways as well as where certain application behaviors that are bad for 
performance could be identified and re-engineered. 

Multi-Purpose I/O Workload Generation 
Another key part of MACSio’s design is that it is intended to provide a lot of 
flexibility and customizability in the way it can drive I/O activities. This flexibility is 
made possible by a few key design choices. 
 
The first, already described above, is the LOA at which MACSio is designed to 
operate. The level of abstraction of MACSio’s data generation will be such that it can 
represent the highest levels of abstraction at which real HPC applications express 
their I/O operations. This, alone, provides a significant amount of flexibility in the 
resulting I/O workloads that MACSio will be able to demonstrate. 
 
Another key design feature of MACSio is the use of a dynamic, run-time plugin 
architecture. This design will define how high-level data generated within MACSio is 
delivered to I/O plugins and will enable plugin developers the greatest flexibility in 
deciding how best to handle data marshaled by MACSio. 

Parallel I/O Paradigms 
The data generated within MACSio will be suitable to drive a variety of parallel I/O 
paradigms within MPI and MPI+ parallel execution contexts. Those in current use 
and most common among HPC applications are illustrated in Figure 4. 
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Figure 4 Common HPC Parallel I/O Paradigms. Black lines tie I/O activities that may proceed in parallel. 
Top: Single Shared File (SSF) both collective and independent, middle: Multiple, Independent File (MIF) 

and bottom: File-per-Processor (FPP). Note that these diagrams illustrate what the application sees 
looking down at the file system. 

Single Shared File (SSF) 
In the single, shared file (SSF) paradigm, parallelism is achieved through concurrent 
access to a single, shared file (from the perspective of the application). This 
paradigm is sometimes also called N->1 because it is N tasks writing to one, single 
file. In this paradigm I/O requests can be either independent or collective. This is 
illustrated by the two paths labeled collective and independent in the upper 
diagram of Figure 4. However, collective requests are seen as being somewhat 
unique to the SSF paradigm as well as potentially offering the greatest opportunity 
for high performance.  On the other hand, there are some subtleties regarding what 
collective I/O operations truly mean in the SSF paradigm (or any other paradigm for 
that matter) that require further clarification in a later section of this document. SSF 
is sometimes referred to as Rich Man’s parallel I/O because it utilizes (requires in 
fact) a parallel interface at the file system LOA (e.g. Lustre, GPFS, or PLFS). 

Segmented and Strided SSF 
In some descriptions, the SSF paradigm is further divided into segmented and strided 
access patterns. These access patterns have to do with the granularity at which data 
from different tasks intermingles in the file address space. In segmented SSF, large 
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swaths of the file address space tend to be read/written by a single task. In strided 
SSF, data from many/all tasks tends to co-mingle even in very fine grained swaths.  
 

Multiple Independent File (MIF) 
In the multiple, independent file (MIF) paradigm, parallelism is achieved through 
simultaneous access to multiple files. The application divides itself into file groups. 
For each file group, the application manages exclusive access among all the tasks of 
the group. I/O is serial within groups but parallel across groups. The number of files 
(groups) is wholly independent from the number of processors and is often chosen 
to match the number of independent I/O pathways available in the hardware 
between the compute nodes and the file system. This paradigm is sometimes also 
called N->M because it is N tasks writing to M files (M<N). 
 
In this paradigm I/O requests are almost exclusively independent. However, there 
are scenarios where collective I/O requests can be made to work and might even 
make sense in the MIF paradigm.  MIF is often referred to as Poor Man’s parallel I/O 
because the onus is on the application to manage the distribution of data across 
potentially many files. In truth, this illuminates the only salient distinction between 
SSF and MIF. In either paradigm, if you dig deep enough into the I/O stack, you soon 
discover that data is always being distributed across multiple files. The only 
difference is whether that physical arrangement of data is hidden from the 
application by some sort of higher level abstraction (e.g. a parallel file system) or 
explicitly managed by the application (and thereby also exposed to the file system). 

File Per Processor (FPP) 
The file per processor paradigm is just a special case of MIF where the number of 
files is equal to the number of processors. This paradigm is sometimes called N->N 
because it is N tasks writing to N files. However, FPP paradigms typically also 
include a throttle to govern the number of files that are being accessed at any one 
time to avoid overloading the underlying storage systems components. 
 
Apart from SSF and MIF, there is indeed a multiple shared file paradigm as well. 
Although it is not often used in practice, ensuring MACSio has the ability to drive 
such a paradigm makes some sense. On the other hand, there isn’t anything 
particularly special about a multiple shared file paradigm that involves additional 
work beyond that necessary to support SSF and MIF. 

What Will Collective I/O Operations in MACSio mean? 
Typically, the notion of collective applies to the interface through which data is 
marshaled. In a collective interface, all processors must call the same function with 
largely the same arguments though buffer contents and sizes may vary from 
processor to processor. Think of a parallel, distributed, 2 dimensional array as 
illustrated in Figure 5.  
 



LLNL-TR-670388 
 

8 

 
Figure 5 Examples of distributed, multi-dimensional array storage in memory and in a file. 

Each processor may have a different, potentially non-contiguous, piece of the array. 
In a single collective call, all processors can work together to marshal it. However, 
collective-ness is a constraint only on the interface between the application and the 
rest of the I/O stack.  What happens with the data below this interface either as it 
moves down the I/O stack and out to the file or up the I/O stack and into the 
application’s memory? In particular, what is the assumed structure of the array in 
the file on read or that winds up getting created in the file on write? 
 
In Figure 5, two common situations are illustrated. In each case, all processors are 
collectively working to either read or write the whole array object. However, in one 
case, the array object in the file is utilized as nothing more than a glorified buffer 
container. We call this an abstraction defeating approach and is a common pitfall in 
parallel I/O benchmarking tools. Any consumer would be unable to correctly 
interpret the array object without having additional information on how to properly 
knit it back together. Furthermore, even if the producer provides such additional 
information, all consumers would have to know such information exists, where to 
find it in the file and how to utilize it. This effectively burdens all consumers with 
the work of implementing the very data model abstractions the layers in the I/O 
stack are designed to provide. 
 
On the other hand, an abstraction preserving approach removes all assumptions 
about parallel decomposition of data and facilitates re-decomposition into different 
parallel distributions upon re-read. In MACSio, valid collective I/O operations, which 
apply primarily to SSF paradigms, will require that the resulting data objects be 
abstraction preserving.  
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Metadata, Burst Buffers and DIT Operations 
File system metadata operations (e.g. file/directory creation and deletion) often 
used in conjunction with these parallel I/O paradigms to manage directory trees 
(breadth and depth) and forests (for many timesteps) will be included in the 
workloads MACSio produces. 
 
Likewise, data staging to/from burst buffers and/or migration to/from tertiary 
storage (via utilities such as SCR or HIO) will be included in MACSio’s design. 
 
In addition, MACSio will enable testing of various I/O-relevant Data-in-Transit (DIT) 
services. Over the past few decades in scientific computing, I/O libraries have 
evolved substantially from simply moving data between memory and persistent 
storage, to offering a variety of other useful capabilities to operate on data in transit. 
There are many DIT services available within various I/O libraries in the HPC I/O 
stack. These include such operations as 

• Numeric format conversions 
• Checksumming for data integrity 
• Precision reduction (e.g. double to float) 
• Lossless and lossy compression 
• Units conversions 
• Data subsetting 
• Coordinate transformations 
• Data re-ordering and layout optimization for down-stream post-processing 
• M-N data shuffles for aggregating I/O requests across ranks 
• In rare cases, even derived variable computation and sophisticated feature 

detection algorithms. 
MACSio will ensure the data it generates to be marshaled by I/O libraries is of a 
sufficient character to drive a number of I/O relevant DIT services as well as provide 
a means for comparing performance/utility among them. 
 
On the other hand, among all the things an I/O library can do, one thing it ought to 
do well is I/O. And, this is first and foremost what MACSio is being designed to test 
and measure; an I/O library’s ability to do I/O apart from anything else the library 
may be capable of doing and, in particular, the library’s ability to do I/O at scales 
and in configurations relevant to current and future generation systems and 
applications. 

Existing I/O Benchmarking Tools 
In this section we introduce and describe several existing I/O benchmarking tools 
available. We first describe some well known HPC specific benchmarks. Then, for 
completeness, we also list several non-HPC specific benchmark tools but without 
much discussion of their capabilities. 
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In Table 1 we summarize results from a review of a number of currently available 
I/O benchmarking tools.  
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Table 1 Feature Comparison of I/O Performance Tools 

 Lang LOA Pmode Verify Coll Real 
Data 

Abs 
Keep 

HPC relevant DIT Services EZ Extend Dir 
Ops 

Perf 
DB 

Last 
Active M/N Zip Sub Trans Pmode Lib MPI+ 

IOR C File system SSF, MIF Yes Yes No No Yes No No No No Yes  Yes No 2013 
FLASH-IO Mix AMR Mesh SSF No No No Yes No No No No No No  No No 2011 
S3D-IO Fort 3D Array SSF No Yes No Yes No No No No No No  No No ? 
BTIO Fort 3D Array SSF Yes Yes Yes Yes No No No No No No  No No 2003 
GCRM-IO C AMR Mesh SSF No Only No Yes No No No No No No  No No 2013? 
HACC-IO C++ 1D Array SSF No No No No No No No No Yes Yes  No No 2012 
b_eff_io C File system SSF, FPP No Yes No No No No No No Yes No  No No 2001 
MPI  Tile  IO C File system SSF No Yes No No Yes No No No No No  No No 2001 
Non contig IO C File system SSF Yes Yes No No No No No No No No  No No 2005 
fs_test C File system SSF Yes Yes No No No No No NO No No  Yes Yes 2008 
Parkbench Fort File system SSF Some Yes No Yes No No No Yes No No  No No 1997 
Mdtest C Fileystem None No No No No No No No No No No  Yes No 2003 
Rompio C File system SSF Yes Yes No No No No No No No No  No No 2007 
                  
                  
                  
Tiobench C File system None              2000 
                  

 
Legend: 
Lang = programming language 
LOA = Level of abstraction within I/O stack at which benchmark’s I/O requests operate 
Pmode = Parallel I/O paradigms/modes supported 
Verify = Are I/O requests verified that expected data is read/written 
Coll = Does the benchmark test/support collective I/O requests 
Real Data = Is the data marshaled by the benchmark representative of a real application 
Abs Keep = Are the I/O operations abstraction preserving 
HPC Relevant DIT Services (Are the following Data In Transit services tested/supported…) 

M/N = M<->N Data shuffles 
Zip = Compression, including precision reductions 
Sub = Data subsetting 
Trans = Data re-orderings/transposes 

EZ Extend (Does the implementation appear to support easily adding…) 
 Pmode = a new I/O paradigm/mode 
 Lib = a new I/O library 
 MPI+ = multi-core/multi-threading 
Dir Ops = Are file system directory operations in concert with file I/O tested/supported 
Perf DB = Are performance results captured in a curated/hosted database 
Last Active = Guesstimate of last time any development work was performed 
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Detailed Discussion of some HPC Specific I/O Benchmarks 
Here we briefly describe some of the existing HPC I/O benchmarking tools currently 
available. The information presented here is gleaned from reading and in some 
cases directly quoting documentation and where necessary actual source code. 

fs_test (formerly MPI-IO Test) 
fs_test was originally developed at LANL under the name MPI-IO Test. It is available 
on GitHub (https://github.com/fs-test) and was last updated May, 2014. Fs_test 
operates at the “File system” LOA (lowest level of the green levels highlighted in 
figure 1) It tests reads and writes, collective and independent, via PLFS, Posix and 
MPI-IO. Using terminology defined in the fs_test documentation, it also aims to test 
N-N, N-M and N-1 (strided and non-strided) DIT services. The shuffle patterns 
produced represent highly regularized, best case scenarios. So, the benchmark is apt 
to produce optimistic, upper bounds of I/O performance realizable by HPC multi-
physics applications.

IOR 
IOR stands for "Interleaved or Random". It is available on SourceForge 
(http://sourceforge.net/projects/ior-sio/) and was last updated April 2013. IOR 
operates at the “File system” LOA (lowest level of the green levels highlighted in 
figure 1). IOR is designed to test parallel file system performance by driving I/O 
requests, reads and writes, collective and independent through one of several 
available interfaces; MPI-IO, Posix (file-per-processor), PLFS, IOD*, DAOS*, HDF5 
and netCDF (parallel). It supports SSF I/O (Single shared file) and there appears to 
be limited support for MIF I/O. 

IOR employs an abstract interface for characterizing I/O operations and then 
includes a number of implementations of this interface for each of the 
aforementioned products. The IOD and DAOS products are internal interfaces to the 
Fast Forward I/O Stack. IOD is the "IO Dispatcher" and DAOS is the "Distributed 
Application Object Storage" layer interface. MPI-IO, Posix, PLFS, IOD, DAOS are file 
system interfaces while HDF5 and netCDF are high-level array-based I/O libraries. 

Because IOR's abstract interface for characterizing I/O operations is designed more 
or less at the file system level of abstraction, it winds up using and driving HDF5 and 
netCDF in substantially restricted ways from how applications ordinarily use them. 
In short, IOR doesn't use HDF5 or netCDF interfaces at the same LOA multi-physics 
HPC applications typically would. 

An important feature of IOR's design is that its very simple abstract interface makes 
it easy to plug in, statically, new I/O interfaces to it. Though, at present those 
interfaces are defined at compile time. There appears to be some work underway to 
add Amazon S3, HDF5 REST interfaces and mdtest (see below) functionality into 
IOR. 

https://github.com/fs-test
http://sourceforge.net/projects/ior-sio/
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However, IOR cannot drive any of these interfaces at an LOA that is significantly 
different from the file system LOA. That alone makes IOR unsuitable for the kind of 
end-to-end performance analysis and comparisons we wish to achieve. IOR cannot 
test compresssion of multi-dimensional arrays. It cannot test M-N data shuffles of 
multi-dim arrays, traffic and performance of which is much more complicated than 
swaths of 1D buffers. For that matter, it cannot test the effects of different chunking 
and blocking factors of multi-dim arrays. In no way could it drive bi-modal 
interfaces like iMeshP, LibMesh or Vista.  The workloads IOR generates are very 
regular, the same data in the same sizes from the same processors at the same 
intervals. It sort of represents the minimum you'd want from a benchmarking tool. 

mdtest 
mdtest is available on SourceForge (http://sourceforge.net/projects/mdtest/) and 
was last updated December, 2013. Like fs_test and IOR, mdtest operates at the “File 
system” LOA (lowest level of the green levels highlighted in Figure 1). However, 
unlike fs_test and IOR, mdtest is designed primarily to test a file system's 
performance in handling its own, internal metadata associated with directory tree 
creation and traversal, file and link creation and stat inquires. So, mdtest isn't 
designed so much to drive I/O requests (although it appears to have some ability to 
do that), as it is to drive primitive file system operations often used on conjunction 
with various parallel I/O paradigms where file and dir-tree creation and traversal 
are involved. It appears to drive both Posix and PLFS interfaces. 

Darshan I/O Instrumentation Library 
Darshan is not an I/O benchmark. It is an I/O instrumentation library available from 
ANL (http://git.mcs.anl.gov/radix/darshan.git/). It was last updated October, 2014. 
It enables developers to take any existing application and, with minimal effort, 
instrument it with Darshan to collect detailed timing information on Posix and 
MPI_File I/O operations during application runs. It does its work at the file system 
LOA (lowest level of the green levels highlighted in Figure 1), just as the other 
benchmarking tools do. But it makes it possible to collect detailed file system 
performance data from real applications in real use. It enables any application to be 
used more or less like a benchmarking tool. 

Non HPC-specific I/O Benchmarks 
In this section, we briefly describe some other non-HPC specific benchmarking tools 
available either commercially or as Open Source. 

iozone 
Iozone is useful for determining a broad file system analysis of a vendor’s computer 
platform. The benchmark tests file I/O performance for the following operations. 
Read, write, re-read, re-write, read backwards, read strided, fread, fwrite, random 
read/write, pread/pwrite variants, aio_read, aio_write, mmap, 

http://sourceforge.net/projects/mdtest/
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iometer 
iometer is a Windows only too. It was formerly developed by Intel tool and then 
made Open Source. It tests and measures performance of hardware, buses, disks, 
latencies and bandwidths. 

Fio 
Fio is an I/O Aworkload generator and statistics gatherering and reporting tool. 
http://www.storagereview.com/fio_flexible_i_o_tester_synthetic_benchmark 
http://pkgs.repoforge.org/fio/ 

Filebench 
Filebench is a file system and storage benchmark that can generate both 
micro and macro workloads. It employs a versatile language-based approach for 
workload specification. Filebench includes several popular macro-workloads in its 
distribution including those for Web-server, Mail-server, Database-server, and 
others. 

Bonnie++ 
(http://www.googlux.com/bonnie.html) Bonnie++ is a benchmark tool for testing 
hard disks and file system performance. 

TioTest 
TioTest is a threaded I/O test of sec2/mmap interfaces. 

sgpdd, odbfilter, ost survey 
These are Lustre specific file system performance testing tools. 

testdfs 
testdfs is a tool for testing performance of the distributed file system of Hadoop 
(HDFS) 

Some Observations 
Benchmarks are challenging to develop. I/O benchmarks are no exception. A 2009 
study entitled “A Nine Year Study of File System and Storage Benchmarking” 
(http://www.fsl.cs.sunysb.edu/project-fsbench.html) had this to say... 
 

Benchmarking is critical when evaluating performance, but is 
especially difficult for file and storage systems. Complex interactions 
between I/O devices, caches, kernel daemons, and other OS 
components result in behavior that is rather difficult to analyze. 
Moreover, systems have different features and optimizations, so no 
single benchmark is always suitable. The large variety of workloads 
that these systems experience in the real world also add to this 
difficulty. 
 
We have found that some of the most commonly used benchmarks 
are flawed, and many research papers do not provide a clear enough 

http://www.googlux.com/bonnie.html
http://www.fsl.cs.sunysb.edu/project-fsbench.html
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picture of file system performance. We believe that a good 
performance evaluation should use micro-benchmarks to highlight 
both the good and bad qualities of a file system, as well as general-
purpose benchmarks or traces to give an idea about how it would 
perform under expected and realistic workloads. Nevertheless, care 
should be taken to ensure that general-purpose benchmarks indeed 
accurately reflect the real-world workloads. In addition, benchmarks 
should scale well, and results should be reproducible and comparable 
across papers. 

 
Add to this the additional complexities resulting from parallelism, scalability and the 
HPC I/O stack and its pretty easy to reach the conclusion that scalable I/O 
benchmarks are intractable. 
 
A common theme in these I/O benchmarking tools is proliferation of run-time 
parameters for a test either via command-line arguments or from configuration 
files. For example, in IOR many of the features of high-level products like HDF5 (e.g. 
compression, metadata caching) are not controllable without changing the IOR 
source code perhaps in ways that are incompatible with its overall design or not 
relevant to other I/O interfaces IOR tests. In MACSio, this issue is addressed by 
supporting run-time options that are passed directly to specific plugins. 
 
Almost without exception, all of these I/O benchmarks operate at the lowest LOA, 
the file system interface. Even in the tools that support higher level libraries like 
HDF5, the overall design of the benchmark does not admit the use of the library at 
its natural LOA and instead tends to use the library in far too limited a way to be 
representative of real HPC applications. MACSio will address this issue by freeing 
plugin developers from having to worry about significant parts of the overall 
benchmark implementation and instead allow them to focus on optimal use of the 
library for a handful of specific I/O operations. 
 
None of the tests currently available offer the ability to activate/drive other system 
components, in particular the parallel interconnect, while simultaneously 
attempting to perform I/O. However, additional loads on other system components 
has historically proven to be a significant factor in I/O performance realized by HPC 
applications in actual use. What this means is that existing benchmark tools are 
likely to provide a best case, upper bound on I/O performance and not necessarily a 
realistic estimate of performance HPC applications would realize. While MACSio’s 
design will include accommodations for driving additional system loads (including 
casting internal I/O operations in terms of an asynchronous paradigm), the initial 
implementation of MACSio will also not include these features. 
 
Libraries supporting the HPC I/O stack are complex and require a certain degree of 
expertise to use effectively. Developing a benchmark for any one I/O interface in the 
HPC I/O stack is a significant level of effort. Doing so for more than a handful of 
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interfaces is almost intractable. As a result, the currently available I/O benchmarks 
either do a decent job for a single interface or a mediocre job for several. In the case 
of MACSio, a key intention of the design is that the actual I/O specific coding is 
handled in a product specific plugin which, we expect, product experts to help to 
develop. As part of MACSio’s initial development, we expect to develop a few key 
plugins such as for Silo, HDF5 and maybe LibMesh or ITAPS. These plugins will 
serve as examples to other plugin developers. However, we will also recognize that 
development of plugins for different HPC I/O libraries will involve combined efforts 
of other HPC library experts. 

MACSio Design 
In this section, we describe MACSio’s design at a high level illustrated in Figure 6. 
 

 
Figure 6 High Level Design of MACSio 

The Two Main Pieces of MACSio 
MACSio is divided into two main pieces. The core of MACSio is the upper-level 
driver. The MACSio driver generates data to be marshaled by I/O tests, orchestrates 
tests and monitors performance. The other half of MACSio is the I/O plugins. An I/O 
plugin implements a handful of interface methods to write/read dumps, interact 
with the file system and provide fine-grained performance and event logging 
information. 
 
An I/O plugin in MACSio will manage dumps of data following one of the Parallel I/O 
paradigms; either receiving data from MACSio to write or returning data to MACSio 
to read. Two flavors of plugins will be supported. Uni-modal plugins support storage 
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only as files in the file system. Bi-modal plugins support storage both as files in the 
file system and as an in-memory database for applications to use internally. 

Data Generation 
The main driver of MACSio is responsible for generating the data that will be 
marshaled for I/O performance testing. The data MACSio generates will be 
parameterized, distributed 3D meshes (structured or unstructured) and arrays. 
Parameterization will include  

• Nominal and optionally randomization of mesh/array part counts per 
rank/core 

• A few choices in how mesh/array parts are distributed in parallel including 
nicely structured distributions as well as fully unstructured distributions and 
distributions that utilize only a subset of all cores/ranks. 

• Nominal and optionally randomization of mesh/array part sizes (in terms of 
numbers of zones of mesh or array entries) 

• The number, type (char, int, float) and kind (nodal/zonal) of variables (mesh  
variables or arrays) 

• Choice in algorithm used to fill variable buffers with data (e.g. constant, 
random/chaotic, sinusoidal, Poison distributed, etc.) 

• Depth and breadth with optional randomization of auxiliary metadata 
hierarchies (such as might be seen in material models or various other rich 
metadata produced by multi-physics codes) 

• Frequency of main mesh/array dump writes, reads or both as well as being 
optionally interleaved with auxiliary data dumps. 

 
The data MACSio generates will be housed in an uber JSON-like object tree that is 
handed off to plugins for dump writes and received from plugins on dump reads. 
This tree will include information essential for plugins to determine parallel 
distribution of the main data objects. 

Parallel I/O Mode Manager 
The role of the Parallel I/O Mode manager in MACSio is to provide functionality to 
the I/O plugins necessary to support key parallel I/O modes; SSF, MIF, etc. 
Interaction with the underlying file system, including such operations as file and 
directory creation are important events that will be managed by MACSio on behalf 
of the plugins. When plugins need to perform these operations, they will do so by 
consulting functions in MACSio’s Parallel I/O Mode Manager most likely through use 
of a call-back programming paradigm. 
 
Though it is not pictured in Figure 6, MACSio will also include the ability to control 
various DIT services available in various layers of the I/O stack (and plugins) such 
as MPI-IO’s ability to do M<->N data shuffles, or HDF5’s or netCDF’s ability to do 
compression, etc. 
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Dump Read/Write Sequencing 
Dumps will occur at pseudo-regular intervals, with parameterized randomization. In 
addition, there will be support for at least two categories of dumps, the main dump 
plus a much smaller auxiliary dump (such as might be used for capturing time 
histories or marshaling a subset of the main dump to a linker code). The frequencies 
of each category of dump will be parameterized. In addition, while the main dump 
category will most likely involve new files (but not required) with each new dump, 
the auxiliary dump category need not and may just as well be handled by continuous 
updates to the same file(s) across many dumps. 

Performance Data Collection 
MACSio will capture, minimally, the time required for a plugin to complete the write 
or read of a dump and then average this over many sequences of dumps. In addition, 
plugins will optionally be able to use timing utilities within MACSio to record finer 
grained information regarding performance of individual parts of the dump process. 
This is primarily so that MACSio can be used to gather information on how to 
improve a given I/O library for a given use case MACSio drives. 
 
MACSio will also include the ability to enable and disable Darshan I/O performance 
capture for any given test. 
 
The data MACSio captures will be combined with all relevant test parameters, 
including information the test platform architecture to a curated/hosted 
performance database. 

Diagnostic, Debug, Error and Logging 
It is not pictured in Figure 6. However, MACSio will also include utilities for plugins 
(as well as MACSio proper) to log and  handle error conditions and provide 
additional diagnostic information regarding test progress and behavior. 
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